neowake® Light Studien

Inhaltsverzeichnis

Einführung: Licht- & Laseranwendung (Photobiomodulation)

Der Geschäftsbereich neowake® Light beschäftigt sich mit den Möglichkeiten der modernen Licht- & Laseranwendung. Die daraus entstehenden Effekte (Photobiomodulation) sind mit weit über 6000 (!) Studien schon bewiesen. 


Die Behandlung mit der Chroma Watch deckt einen Großteil der möglichen Effekte ab, da eine 5-in-1 Licht- & Laseranwendung mit den wirksamsten Spektralfarben einfach von zuhause aus eingesetzt werden kann.


Folgende Spektralfarben stehen unseren Kunden durch die Chroma Watch zur Verfügung:

  • Blau (Wellenlänge: 450nm)
  • Grün (Wellenlänge: 532 nm)
  • Gelb (Wellenlänge: 589 nm)
  • Rot (Wellenlänge: 650 nm)


Folgende Licht- & Laseranwendungen stehen unseren Kunden durch die Chroma Watch zur Verfügung:

  • Lichtakupunktur
  • Lichtblutbestrahlung
  • Intravenöse Anwendung
  • Externe Anwendung
  • Intranasale Anwendung
  • (Optional: Photodynamische Lichtanwendung)


Diese ausgewählte, aber nicht vollständige, Auflistung von Studien erweitert das Verständnis zum Einsatz der Chroma Watch.


Kannst du deine Indikation nicht finden? Kontaktiere uns unter Support@neowake.de und wir leiten dir gerne internes Material weiter.


Disclaimer: Die neowake® Chroma Watch ist ein Wellnessprodukt und kein Medizinprodukt. Auf dieser Seite lernst du grundlegend nur das Gebiet der Licht- & Laseranwendung kennen. Die neowake® Chroma Watch erhebt keinen Anspruch darauf, eine Lasertherapie zu sein.

Als Quantenphysikerin weiß ich ganz genau, wie wichtig die richtigen Schwingungen sind. Alles besteht aus Energie in Form von Schwingungen. Ich arbeite mit meinen Klienten an den eigenen Schwingungen von innen heraus. Diese können aber durch externe Schwingungen, also von außen, optimal ergänzt werden. Das beste Programm dafür, dass ich kenne, ist von Marvin Alberg und seinem Neowake. Ich persönlich habe hier die allerbesten Erfahrungen gemacht. Deshalb kann ich diese uneingeschränkt empfehlen.

Intranasale Anwendung (Studien)

Lichtblutbestrahlung (Studien)

Intraaurikuläre Anwendung (Studien)

Photodynamische Anwendung (Studien)

Externe Anwendung (Studien)

Lichtakupunktur (Studien)

Auflistung der Studien nach Indikationen

Photobiomodulation reduces abdominal adipose tissue inflammatory infiltrate of diet-induced obese and hyperglycemic mice – https://www.ncbi.nlm.nih.gov/pubmed/27635634

Photobiomodulation with polychromatic light (600-1200 nm) improves fat graft survival by increasing adipocyte viability, neovascularization, and reducing inflammation in a rat model – https://pubmed.ncbi.nlm.nih.gov/34289510/

 

Photobiomodulation therapy decreases free fatty acid generation and release in adipocytes to ameliorate insulin resistance in type 2 diabetes – https://www.ncbi.nlm.nih.gov/pubmed/31809873

 

Infrared photobiomodulation (PBM) therapy improves glucose metabolism and intracellular insulin pathway in adipose tissue of high-fat fed mice – https://www.ncbi.nlm.nih.gov/pubmed/29247431

 

Low-level laser-assisted liposculpture: clinical report of 700 cases – https://www.ncbi.nlm.nih.gov/pubmed/19331999

Effects of low-level laser therapy on autogenous bone graft stabilized with a new heterologous fibrin sealant – https://www.ncbi.nlm.nih.gov/pubmed/27497370

 

Bone repair assessment of critical size defects in rats treated with mineralized bovine bone (Bio-Oss®) and photobiomodulation therapy: a histomorphometric and immunohistochemical study – https://pubmed.ncbi.nlm.nih.gov/33400010/

 

Photobiomodulation Therapy on the Guided Bone Regeneration Process in Defects Filled by Biphasic Calcium Phosphate Associated with Fibrin Biopolymer – https://pubmed.ncbi.nlm.nih.gov/33562825/

 

Bone marrow coagulated and low-level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization – https://pubmed.ncbi.nlm.nih.gov/32815657/

 

Photobiomodulation therapy (PBMT) in bone repair: A systematic review – https://www.ncbi.nlm.nih.gov/pubmed/31585673

Dose-effect relationships for PBM in the treatment of Alzheimer’s disease – https://iopscience.iop.org/article/10.1088/1361-6463/ac0740/meta

 

Impact of Combined Photo-Biomodulation and Aerobic Exercise on Cognitive Function and Quality-of-Life in Elderly Alzheimer Patients with Anemia: A Randomized Clinical Trial – https://pubmed.ncbi.nlm.nih.gov/33469351/

 

Photobiomodulation suppresses JNK3 by activation of ERK/MKP7 to attenuate AMPA receptor endocytosis in Alzheimer’s disease – https://pubmed.ncbi.nlm.nih.gov/33336891/

 

Therapeutic Potential of Photobiomodulation In Alzheimer’s Disease: A Systematic Review – https://pubmed.ncbi.nlm.nih.gov/33995964/

Effect of Transcranial Near-Infrared Light 1068 nm Upon Memory Performance in Aging Healthy Individuals: A Pilot Study – https://pubmed.ncbi.nlm.nih.gov/34662523/

 

Performance Improvement of Near-Infrared Spectroscopy-based Brain-Computer Interfaces Using Transcranial Near-Infrared Photobiomodulation with the Same Device – https://pubmed.ncbi.nlm.nih.gov/33048667/

 

Transcranial Photobiomodulation Improves Cognitive Performance in Young Healthy Adults: A Systematic Review and Meta-Analysis. – https://www.ncbi.nlm.nih.gov/pubmed/31549906

 

Improving executive function using transcranial infrared laser stimulation – https://www.ncbi.nlm.nih.gov/pubmed/26017772

Transcranial Photobiomodulation for the Treatment of Major Depressive Disorder. The ELATED-2 Pilot Trial – https://www.ncbi.nlm.nih.gov/pubmed/30346890

 

Transcranial and systemic photobiomodulation for major depressive disorder: A systematic review of efficacy, tolerability and biological mechanisms – https://www.ncbi.nlm.nih.gov/pubmed/30248638

 

Multi-Watt Near-Infrared Phototherapy for the Treatment of Comorbid Depression: An Open-Label Single-Arm Study – https://www.ncbi.nlm.nih.gov/pubmed/29033859

 

The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder – https://www.ncbi.nlm.nih.gov/pubmed/28231069

 

Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis – https://www.ncbi.nlm.nih.gov/pubmed/26989758

Exploring the use of transcranial photobiomodulation in Parkinson’s disease patients – https://www.ncbi.nlm.nih.gov/pubmed/30136687

 

Photobiomodulation-induced changes in a monkey model of Parkinson’s disease: changes in tyrosine hydroxylase cells and GDNF expression in the striatum – https://www.ncbi.nlm.nih.gov/pubmed/28299414

 

Turning On Lights to Stop Neurodegeneration: The Potential of Near Infrared Light Therapy in Alzheimer’s and Parkinson’s Disease – https://www.ncbi.nlm.nih.gov/pubmed/26793049

 

The potential of light therapy in Parkinson’s disease – https://www.researchgate.net/profile/Daniel_Johnstone/publication/260267066_The_potential_of_light_therapy_in_Parkinson’s_disease/links/00b495306878c3ffeb000000.pdf

Effects of photobiomodulation on mitochondria of brain, muscle, and C6 astroglioma cells – https://www.ncbi.nlm.nih.gov/pubmed/31303375

 

Intracellular ATP level increases in lymphocytes irradiated with infrared laser light of wavelength 904 nm – https://www.ncbi.nlm.nih.gov/pubmed/18922088

 

Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture – https://www.ncbi.nlm.nih.gov/pubmed/17603858

 

Changes in fibroblast proliferation and metabolism following in vitro helium-neon laser irradiation – https://www.jstage.jst.go.jp/article/islsm/3/1/3_91-OR-04/_article/-char/en

Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies – https://www.ncbi.nlm.nih.gov/pubmed/20666617

 

Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies – https://www.ncbi.nlm.nih.gov/pubmed/20666617

 

Cultured epithelial cells response to phototherapy with low intensity laser – https://www.ncbi.nlm.nih.gov/pubmed/17457843

 

Influence of different power densities of LILT on cultured human fibroblast growth : a pilot study – https://www.ncbi.nlm.nih.gov/pubmed/16699912

Vascular Photobiomodulation – https://pubmed.ncbi.nlm.nih.gov/33577376/

 

Experimental and Clinical Applications of Red and Near-Infrared Photobiomodulation on Endothelial Dysfunction: A Review – https://pubmed.ncbi.nlm.nih.gov/33803396/

 

Effects of light-emitting diodes irradiation on human vascular endothelial cells – https://www.ncbi.nlm.nih.gov/pubmed/30046164

 

Blood microcirculation under laser physio-and reflexotherapy in patients with lesions in vessels of low extremities – https://www.jstage.jst.go.jp/article/islsm/2/2/2_90-OR-04/_article/-char/en

Light in diagnosis, therapy and surgery – https://www.ncbi.nlm.nih.gov/pubmed/28649464

 

Biophotonic Therapy Induced Photobiomodulation – https://link.springer.com/chapter/10.1007/978-3-030-45351-0_37

 

Photobiomodulation—Underlying Mechanism and Clinical Applications – https://pubmed.ncbi.nlm.nih.gov/32503238/

 

Laser/Photobiomodulation – https://books.google.fi/books?hl=fi&lr=&id=di_XDwAAQBAJ&oi=fnd&pg=PA189&dq=photobiomodulation&ots=9ZgmHGvD6B&sig=pxr2enDSdIphIrf3qDq4A5AkOkI&redir_esc=y#v=onepage&q=photobiomodulation&f=false

 

Assessing the impact of low level laser therapy (LLLT) on biological systems: a review – https://www.ncbi.nlm.nih.gov/pubmed/30614743

Photobiomodulation for the management of hair loss – https://pubmed.ncbi.nlm.nih.gov/33377535/

 

The Effectiveness of Combination Therapies for Androgenetic Alopecia: A Systematic Review and Meta-Analysis – https://pubmed.ncbi.nlm.nih.gov/32478968/

 

The use of low-level light for hair growth: part I. – https://www.ncbi.nlm.nih.gov/pubmed/19466643

 

Low-level light therapy for androgenetic alopecia: a 24-week, randomized, double-blind, sham device-controlled multicenter trial. – https://www.ncbi.nlm.nih.gov/pubmed/23551662

Effect of low-level laser treatment on cochlea hair-cell recovery after ototoxic hearing loss – https://www.ncbi.nlm.nih.gov/pubmed/24343446

 

Efficacy of Low-Level Laser Therapy in Subjective Tinnitus Patients with Temporomandibular Disorders – http://online.liebertpub.com/doi/10.1089/pho.2016.4240

 

Change of Tinnitus with Xenon Phototherapy of the Stellate Ganglion. – https://www.ncbi.nlm.nih.gov/pubmed/30096265

 

Low level laser effect in treatment of patients with intractable tinnitus due to sensorineural hearing loss – https://www.ncbi.nlm.nih.gov/pubmed/25653802

 

Combined laser-EGb 761 tinnitus therapy – https://www.ncbi.nlm.nih.gov/pubmed/11677752

Low-level light therapy reduces platelet destruction during extracorporeal circulation – https://www.ncbi.nlm.nih.gov/pubmed/30446721

 

Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism. – https://www.ncbi.nlm.nih.gov/pubmed/18930064

 

Photobiomodulation therapy combined with carvedilol attenuates post-infarction heart failure by suppressing excessive inflammation and oxidative stress in rats. – https://www.ncbi.nlm.nih.gov/pubmed/31263132

 

The influence of low-level laser therapy on parameters of oxidative stress and DNA damage on muscle and plasma in rats with heart failure.- https://www.ncbi.nlm.nih.gov/pubmed/24906481

Immunological Aspects of LLLT – https://www.jstage.jst.go.jp/browse/islsm/5/3/_contents/-char/en

 

Effect of NIR Laser Therapy by MLS-MiS Source on Fibroblast Activation by Inflammatory Cytokines in Relation to Wound Healing – https://pubmed.ncbi.nlm.nih.gov/33809724/

 

Aging of lymphoid organs: Can photobiomodulation reverse age-associated thymic involution via stimulation of extrapineal melatonin synthesis and bone marrow stem cells? – https://www.ncbi.nlm.nih.gov/pubmed/29227581

 

TRPV Channels in Mast Cells as a Target for Low-Level-Laser Therapy. – https://www.ncbi.nlm.nih.gov/pubmed/24971848

Whole-Organ Transdermal Photobiomodulation (PBM) of COVID-19: A 50-Patient Case Study – https://pubmed.ncbi.nlm.nih.gov/34658147/

 

Intranasal photobiomodulation therapy for COVID-19-related olfactory dysfunction: A Brazilian multicenter case series – https://pubmed.ncbi.nlm.nih.gov/34628071/

 

Photobiomodulation Therapy as a Possible New Approach in COVID-19: A Systematic Review – https://pubmed.ncbi.nlm.nih.gov/34207199/

 

Evaluation of Adjunctive Photobiomodulation (PBMT) for COVID-19 Pneumonia via Clinical Status and Pulmonary Severity Indices in a Preliminary Trial – https://pubmed.ncbi.nlm.nih.gov/33776469/

 

Understanding COVID-19 Pandemic: Molecular Mechanisms and Potential Therapeutic Strategies. An Evidence-Based Review – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802346/

 

The Potential Role of Photobiomodulation in Long COVID-19 Patients Rehabilitation – https://pubmed.ncbi.nlm.nih.gov/33497594/

 

The Effectiveness of Photobiomudulation Therapy (PBMT) in COVID-19 Infection – https://pubmed.ncbi.nlm.nih.gov/33995965/

 

Light-based technologies for management of COVID-19 pandemic crisis – https://pubmed.ncbi.nlm.nih.gov/32855026/

Laser Treatment of Synovial Inflammatory Process in Experimentally Induced Microcrystalline Arthritis in Wistar Rats – https://pubmed.ncbi.nlm.nih.gov/32519204/

 

Low level laser therapy for osteoarthritis and rheumatoid arthritis: a metaanalysis – https://www.ncbi.nlm.nih.gov/pubmed/10955339

 

Innovations and Challenges by Applying Sublingual Laser Blood Irradiation in Juvenile Idiopathic Arthritis – https://www.hindawi.com/journals/ijp/2014/130417/

 

Infrared (810-nm) low-level laser therapy on rat experimental knee inflammation. – https://www.ncbi.nlm.nih.gov/pubmed/21484455

Effects of low-level and high-intensity laser therapy as adjunctive to rehabilitation exercise on pain, stiffness and function in knee osteoarthritis: a systematic review and meta-analysis – https://pubmed.ncbi.nlm.nih.gov/34654554/

 

Effects of photobiomodulation and a physical exercise program on the expression of inflammatory and cartilage degradation biomarkers and functional capacity in women with knee osteoarthritis: a randomized blinded study – https://pubmed.ncbi.nlm.nih.gov/34656170/

 

A randomised controlled trial of laser acupuncture improves early outcomes of osteoarthritis patients‘ physical functional ability after total knee replacement – https://pubmed.ncbi.nlm.nih.gov/33677172/

 

Effectiveness of high-intensity laser therapy in the management of patients with knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials. – https://pubmed.ncbi.nlm.nih.gov/32831189/

Liver regeneration following partial hepatectomy is improved by enhancing the HGF/Met axis and Akt and Erk pathways after low-power laser irradiation in rats. – https://www.ncbi.nlm.nih.gov/pubmed/23334786

 

Enhanced liver regeneration following acute hepatectomy by low-level laser therapy – https://www.ncbi.nlm.nih.gov/pubmed/20932182

 

The use of light-emitting diodes to stimulate mitochondrial function and liver regeneration of partially hepatectomized rats – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2007000800006

 

Prophylactic application of laser light restores L-FABP expression in the livers of rats submitted to partial ischemia – https://www.ncbi.nlm.nih.gov/pubmed/29972436

Low level laser therapy (Photobiomodulation therapy) for breast cancer-related lymphedema: a systematic review – https://www.ncbi.nlm.nih.gov/pubmed/29216916

 

Far infrared ray (FIR) therapy: An effective and oncological safe treatment modality for breast cancer related lymphedema – https://www.ncbi.nlm.nih.gov/pubmed/28535427

 

Anti-inflammatory and lymphangiogenetic effects of low-level laser therapy on lymphedema in an experimental mouse tail model – https://www.ncbi.nlm.nih.gov/pubmed/26714983

 

A systematic review of the effect of low-level laser therapy in the management of breast cancer-related lymphedema. – https://www.ncbi.nlm.nih.gov/pubmed/22875413

Effect of He–Ne laser irradiation on hydrogen production by Enterobacter aerogenes – https://www.sciencedirect.com/science/article/pii/S0360319907005277

 

Two different mechanisms of low-intensity laser photobiological effects on Escherichia coli – https://www.ncbi.nlm.nih.gov/pubmed/7965412

 

Paramecium: a promising non-animal bioassay to study the effect of 808 nm infrared diode laser photobiomodulation – https://www.ncbi.nlm.nih.gov/pubmed/25555194

 

A study on the interirradiation interval – http://aem.asm.org/content/73/1/226.full

In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle – https://www.ncbi.nlm.nih.gov/pubmed/20408982

 

Near-infrared light therapy to attenuate strength loss after strenuous resistance exercise – https://www.ncbi.nlm.nih.gov/pubmed/25397864

 

The influence of photobiomodulation on the temperature of the brachial biceps during muscle fatigue protocol – https://pubmed.ncbi.nlm.nih.gov/34255219/

 

Does Low-Level Laser Therapy Decrease Muscle-Damaging Mediators After Performance in Soccer Athletes Versus Sham Laser Treatment? A Critically Appraised Topic – https://pubmed.ncbi.nlm.nih.gov/32369763/

Low level laser therapy for the patients with painful diabetic peripheral neuropathy – A systematic review – https://www.ncbi.nlm.nih.gov/pubmed/31405692

 

Efficacy of low level laser therapy on painful diabetic peripheral neuropathy. – https://www.ncbi.nlm.nih.gov/pubmed/26557734

 

Evidence of changes in sural nerve conduction mediated by light emitting diode irradiation. – https://www.ncbi.nlm.nih.gov/pubmed/15895289

 

Photobiomodulation Therapy (PBMT) in Peripheral Nerve Regeneration: A Systematic Review. – https://www.ncbi.nlm.nih.gov/pubmed/29890728

 

Photobiomodulation for Spinal Cord Injury: A Systematic Review and Meta-analysis – https://pubmed.ncbi.nlm.nih.gov/32504695/

Clinical use of photobiomodulation as a supportive care during radiation therapy – https://pubmed.ncbi.nlm.nih.gov/34623486/

 

Tumor safety and side effects of photobiomodulation therapy used for prevention and management of cancer treatment toxicities. A systematic review – https://www.ncbi.nlm.nih.gov/pubmed/31109692

 

Retrospective evaluation of the safety of low-level laser therapy/photobiomodulation in patients with head/neck cancer – https://www.ncbi.nlm.nih.gov/pubmed/31502227

 

Cost-effectiveness of photobiomodulation therapy for the prevention and management of cancer treatment toxicities: a systematic review – https://pubmed.ncbi.nlm.nih.gov/33411048/

Dental laser phototherapy – https://www.ncbi.nlm.nih.gov/pubmed/24905926

 

Developments in low level light therapy (LLLT) for dentistry – https://www.ncbi.nlm.nih.gov/pubmed/24656472

 

Low level light therapy (LLLT) for the treatment and management of dental and oral diseases – http://www.magonlinelibrary.com/doi/abs/10.12968/denu.2014.41.9.763

 

Photobiomodulation in dentistry – https://www.ncbi.nlm.nih.gov/pubmed/22970655

The Use of Laser Therapy for Patients with Fibromyalgia: A Critical Literary Review – https://www.ncbi.nlm.nih.gov/pubmed/31360363

 

Photobiomodulation Therapy: A Possible Answer to the Opioid Crisis – https://www.ncbi.nlm.nih.gov/pubmed/31502922

 

Comparative analysis of analgesic efficacy of selected physiotherapy methods in low back pain patients – https://www.ncbi.nlm.nih.gov/pubmed/20675864

 

Low-level laser therapy for chronic non-specific low back pain: a meta-analysis of randomised controlled trials. – https://www.ncbi.nlm.nih.gov/pubmed/27207675

Effect of pulsing in low-level light therapy – https://www.ncbi.nlm.nih.gov/pubmed/20662021

 

Intricacies of dose in laser phototherapy for tissue repair and pain relief – https://www.ncbi.nlm.nih.gov/pubmed/19473073

 

Photobiomodulation via multiple-wavelength radiations. – https://www.ncbi.nlm.nih.gov/pubmed/31523781

Comparative Effect of Low-intensity Laser Radiation in Green and Red Spectral Regions on Functional Characteristics of Sturgeon Sperm – https://pubmed.ncbi.nlm.nih.gov/32692856/

 

Photobiomodulation restores spermatogenesis in the transient scrotal hyperthermia-induced mice – https://www.ncbi.nlm.nih.gov/pubmed/32407848

 

New approach in the application of the helium-neonlaser in acupuncture therapy for prostatitis: a clinical study involving 114 cases – https://www.jstage.jst.go.jp/article/islsm/1/1/1_89-OR-05/_article/-char/en

 

Personal Overview of the Application of LLLT in Severely Infertile Japanese Females – https://www.ncbi.nlm.nih.gov/pubmed/24610987

 

LLLT for Female Infertility: No Longer Just a Dream – https://www.ncbi.nlm.nih.gov/pubmed/26557730

 

Effectiveness of low level laser therapy for treating male infertility – https://www.ncbi.nlm.nih.gov/pubmed/29806585

Light-emitting diode-based photobiomodulation reduces features of allergic asthma in mice – https://www.ncbi.nlm.nih.gov/pubmed/31140603

 

Effect of Low-Level Laser Therapy (LLLT) in Pulmonary Inflammation in Asthma Induced by House Dust Mite (HDM): Dosimetry Study – https://www.ncbi.nlm.nih.gov/pubmed/31015955

 

Effect of low-level laser therapy on allergic asthma in rats. – https://www.ncbi.nlm.nih.gov/pubmed/24158722

 

Low-level laser therapy inhibits bronchoconstriction, Th2 inflammation and airway remodeling in allergic asthma. – https://www.ncbi.nlm.nih.gov/pubmed/24486607

Acute effects of photobiomodulation therapy (PBMT) combining laser diodes, light-emitting diodes, and magnetic field in exercise capacity assessed by 6MST in patients with COPD: a crossover, randomized, and triple-blinded clinical trial – https://www.ncbi.nlm.nih.gov/pubmed/30255449

 

Low-level laser therapy in chronic obstructive lung disease – http://www.ejbronchology.eg.net/article.asp?issn=1687-8426;year=2018;volume=12;issue=3;spage=317;epage=322;aulast=Sayed

 

Low-Level Laser Therapy Reduces Lung Inflammation in an Experimental Model of Chronic Obstructive Pulmonary Disease Involving P2X7 Receptor – https://www.ncbi.nlm.nih.gov/pubmed/29686745

 

Immunomodulatory effects of two different physical therapy modalities in patients with chronic obstructive pulmonary disease – https://www.ncbi.nlm.nih.gov/pubmed/28931981

Clinical effect of low-energy double-pass 1450 nm laser treatment for acne in Asians – https://www.ncbi.nlm.nih.gov/pubmed/19152509

 

Laser and other light therapies for the treatment of acne vulgaris: systematic review. – https://www.ncbi.nlm.nih.gov/pubmed/19239470

 

Non-invasive diagnostic evaluation of phototherapeutic effects of red light phototherapy of acne vulgaris. – https://www.ncbi.nlm.nih.gov/pubmed/18811865

 

Handheld LED array device in the treatment of acne vulgaris. – https://www.ncbi.nlm.nih.gov/pubmed/18459515

Light Emitting Diode Phototherapy for Skin Aging – https://www.ncbi.nlm.nih.gov/pubmed/32272511

 

In vitro effect of low-level laser therapy on the proliferative, apoptosis modulation, and oxi-inflammatory markers of premature-senescent hydrogen peroxide-induced dermal fibroblasts – https://www.ncbi.nlm.nih.gov/pubmed/30712124

 

Low Level Light Therapy with Light-Emitting Diodes for the Aging Face – http://www.sciencedirect.com/science/article/pii/S0094129816300220

Efficacy of phototherapy to treat facial ageing when using a red versus an amber LED: a protocol for a randomised controlled trial – https://www.ncbi.nlm.nih.gov/pubmed/29858421

 

Effects of radiofrequency, electroacupuncture, and low-level laser therapy on the wrinkles and moisture content of the forehead, eyes, and cheek – https://www.ncbi.nlm.nih.gov/pubmed/28265160

 

S100a8/NF-κB signal pathway is involved in the 800-nm diode laser-induced skin collagen remodeling – https://www.ncbi.nlm.nih.gov/pubmed/26914682

 

Phototherapy in anti-aging and its photobiologic basics: a new approach to skin rejuvenation. – https://www.ncbi.nlm.nih.gov/pubmed/17173579

The impact of photobiomodulation on the chondrogenic potential of adipose-derived stromal/stem cells – https://pubmed.ncbi.nlm.nih.gov/34217028/

 

Photobiomodulation: An Effective Approach to Enhance Proliferation and Differentiation of Adipose-Derived Stem Cells into Osteoblasts – https://pubmed.ncbi.nlm.nih.gov/33833810/

 

Presenting a Method to Improve Bone Quality Through Stimulation of Osteoporotic Mesenchymal Stem Cells by Low-Level Laser Therapy. – https://www.ncbi.nlm.nih.gov/pubmed/28621568

 

Photobiomodulation of mineralisation in mesenchymal stem cells – https://pubmed.ncbi.nlm.nih.gov/33945145/

Low-intensity LED therapy (658 nm) on burn healing: a series of cases – https://www.ncbi.nlm.nih.gov/pubmed/29199384

 

Low level laser therapy: a promising adjunct therapeutic modality for pain control after coronary artery bypass graft surgery. – https://www.ncbi.nlm.nih.gov/pubmed/30671204

 

Combination treatment with light emitting diode and wound dressings in a patient with a venous leg ulcer: a case report. – https://www.ncbi.nlm.nih.gov/pubmed/32206822

 

Comparison of photobiomodulation in the treatment of skin injury with an open wound in mice – https://pubmed.ncbi.nlm.nih.gov/33496904/

 

Therapeutic advances in wound healing. – https://www.ncbi.nlm.nih.gov/pubmed/32056472

Die unterschiedlichen Licht- & Laseranwendungen haben sich über die letzten Jahre im klinischen Feld als zuverlässig und sicher herausgestellt. Jede hier vorgestellte Licht- & Laseranwendung ist mit Studien belegt und wird weltweit von Fachpersonal eingesetzt.

Volle Auflistung von 6000+ Studien

Disclaimer: Wir betonen hiermit, dass wir mit der Anwendung von unseren Frequenzen und Behandlungen keine Heilwirkungen versprechen können und dies auch nicht wollen. Die genannten Wirkungsweisen beruhen allesamt auf Erfahrungen, die in der praktischen Anwendung gemacht wurden. Diese können jedoch nicht auf den Einzelfall übertragen werden. Es fehlt ein schulmedizinischer Nachweis über die Wirksamkeit. Es handelt sich um ein Wellnessgerät kein medizinisches Gerät.

>